Dependence on boundary data and a generalized boundary-value problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

A generalized Lyapunov's inequality for a fractional boundary value problem

We prove existence of positive solutions to a nonlinear fractional boundary value problem. Then, under some mild assumptions on the nonlinear term, we obtain a smart generalization of Lyapunov’s inequality. The new results are illustrated through examples.

متن کامل

On Bernoulli Boundary Value Problem

We consider the boundary value problem:    x (m) (t) = f (t, x(t)), a ≤ t ≤ b, m > 1 x(a) = β 0 ∆x (k) ≡ x (k) (b) − x (k) (a) = β k+1 , continuous at least in the interior of the domain of interest. We give a constructive proof of the existence and uniqueness of the solution, under certain conditions, by Picard's iteration. Moreover Newton's iteration method is considered for the numerical ...

متن کامل

Schwarz boundary problem on a triangle

In this paper, the Schwarz boundary value problem (BVP) for the inhomogeneous Cauchy-Riemann equation in a triangle is investigated explicitly. Firstly, by the technique of parquetingreflection and the Cauchy-Pompeiu representation formula a modified Cauchy-Schwarz representation formula is obtained. Then, the solution of the Schwarz BVP is explicitly solved. In particular, the boundary behavio...

متن کامل

Continuous Dependence on Data for Quasiautonomous Nonlinear Boundary Value Problems

Here A : D(A) ⊆H →H is a maximal monotone operator (possibly multivalued) in a real Hilbert space H , D(A) is its domain, a,b ∈ D(A), f ∈ L2(0,T ;H), and p, r are two continuous functions from [0,T] to R. In [10, 11], Barbu proved the existence of the solution in the case p ≡ 1, r ≡ 0. The author considered the boundary value problems u′′(t) ∈Au(t) + f (t), a.e. t ∈ (0,T), u(0) = a, u(T) = b, (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1968

ISSN: 0022-0396

DOI: 10.1016/0022-0396(68)90022-3